Hypothesis testing?

大垣俊一

今、生態学のさまざまな研究局面で、「この仕事はどういう仮説を検証したのか」という問いが発せられている。この言葉の背景には、ただ事実を集めて解釈するよりも、何かの仮説、理論へののっとり、それとの関係で結果を位置づけるほうがより優れた研究であるという暗黙の了解がある。私自身研究を始めた頃から、自分が生態学の大きな理論を生み出す、とまでは行かないにしても、それに対して「ひとこと言う」くらいのことはめざして研究を進めてきた。理論至上観は生態学者の常識であって、誰もこれを疑わない。しかし、常識というのはしばしば疑ってみる価値のあるものである。常識に捉われず、視点を変えすることによって新たな局面が生まれてくることは、科学や学問の世界には限らず、我々が日常生活の中でもしばしば経験することだろう。

理論や仮説の立を前提とする仮説検証（hypothesis testing）型の研究が、マクロ生物学の主流といえるような状態になったのはそれほど古いことではない。その歴史と背景、対立概念を検討し、hypothesis testing型研究の妥当性と、現実局面への適用をめぐる問題を探ってみる。

仮説演繹と帰納

生態学で言われる「仮説」には２種類あるようにみえる。一つは事実段階の仮説である。ミツバチは太陽の位置をもとに方向を決めているのではないか、とか、ある地点の植物プランクトンの存在量の制限要因はリンの濃度である、など。二つ目は、理論的仮説（あるいは理論そのもの）で、さまざまな事実関係を包含し、前者より上の階層にある概念である。近年の群集生態学から例をとれば、multiple stable pointsとか、intermediate disturbance theory（中規模かく乱説）といったものに当る。

仮説検証とは、こうした仮説や理論が正しいかどうかを、事実に照らして検討することである。仮説を立てて実験で調べるというスタイルは、バストゥールやベルナールに見られるように、19世紀、近代科学の草創期から存在した（バストゥール 1861; ベルナール 1965）。しかし1930年代にポパーが反証主義を提唱し、それにもとづく仮説演繹法（hypothetico-deductiveism, 略称 HD）として定式化されてから、仮説検証スタイルは科学の各分野に広まり、いささかいタイムラグを経て、生態学にも浸透したと見ることができる。1970年代以降の理論生態学の文献には、ポパーと HDのチームが頻繁に登場する（大垣 2006）。

仮説演繹法については以前にも何度か触れているが、今回の議論の主戦となるので簡単に要約する。反証主義によれば、仮説が真であることは、それと合致する事実がいくらあっても証明することはできず、それに反する事実を示すことによって偽であ
ことを示しやすいとすぎない。そこで具体的なプロセスとしては、まず仮説を示し、その仮説から導かれる事実関係を実験や観察によって調べる。その結果がもとの仮説と矛盾していれば仮説を否定し、合っていればとりあえず仮説は維持される。仮説を演繹して出てくる事実をテスト（hypothesis testing）することから、「仮説演繹法」と呼ばれる。仮説と仮説演繹の対立概念は「帰納」である。帰納においては、多くの観察事例からの一般的な推論（仮説、理論）を導こうとする。あらかじめ存在する仮説に対して観察事実がそれに合っていれば、その仮説が正しいいないし正しい確率が増したとみなす、というのも帰納的態度といえる。従って、仮説演繹を前提とするか、帰納を前提とするかで研究スタイルは違ってくる。

ポバーは帰納を徹底的に批判、否定した。その主張を端的に言えば、これまでこうだったという事実と、これからもそうだろうという推論の間には論理的な結びつきがない、ということである。「帰納、すなわち多数の観察事例に基づいた推論、などいうものは神話である。それは心理的な事実でもなく、日常生活の事実でもなく、科学的な手続きの一つでもない」（ポバー1963）。ポバーの帰納批判は、仮説を導く過程での帰納の役割や、事実の整集によって仮説の真理値が高まるとするベイズ主義にも及びている。これらの主張は生態学にも影響を及ぼした。1970〜80年代の理論生態学の文献では、一部に仮説演繹主義への批判（Quinn & Dunham 1983）や帰納との併用の主張（Mentis 1988）がみられるものの、全体としてはHDを優先する論調のものが主流を占めている（大垣2006）。

しかし仮説演繹法の根幹をなす反説主義については、のちにきびしい批判が加えられようとなった。その論点は、科学は仮説によって進歩してきたのではないこと、反説はしばしば不可能であること、人間の認識は大部分が演繹ではなく帰納によって成り立っていること、などと要約できる（大垣2010a）。その結果、かつてポバーが主張したような素朴な反説主義は、もはや維持されないとみなされるに至った（ラカトシュ1978）。科学哲学の論争の経緯や現状における結論が、現場科学としての生態学の方法論の是非を決めるわけではない。しかし研究者が当然信じて疑わざる方針が、実は特定の思想的背景と歴史を持ち知ること、あるいは無意味なことではないだろう。それはある場合には研究の直面を防ぎ、より柔軟な姿勢で自然に対することを可能にするかもしれないからである。

Hypothesis testing の光と陰

では生態学における仮説検証型の研究は、実際にどのように行われているのか。山ほど実例があるが、事実レベルの仮説を検証した典型的な例として、サンゴ礁における 'predation halo'（捕食裸帯地）の研究（Ogden et al. 1973）をとり上げる。カリブ海の、あるバッチリーフ群は、周辺を海草帯に囲まれているが、各リーフの周辺数mの範囲にだけ海草がなく、砂地になっている。著者らは物理環境や魚による捕食、リーフに棲むガンガゼの生態などの情報を検討し、halo はガンガゼの捕食活動でできると予想した。そしてあるバッチリーフの周辺十数地点でガンガゼの密度と裸帯地
の幅を測定したところ、両者の間には正の相関がみられた。こうして状況を絞り込んだ上、著者らはリーフの一部でガンザを除去する実験を行った。その結果8ヶ月後にはかつての裸地帯に海草が再び、halo は完全に消えた。これをもって、著者らはリーフ周囲の裸地帯は、ガンザの捕食活動によってできると結論したのである。以上を仮説演繹の枠組みで言えばこうなる。まず状況説明から「裸地帯はガンザの捕食による」とする仮説を立案し、ガンザを除去すれば halo は消えるという予測を演繹する。除去しても halo は残るならばこの仮説は反証されるという前提のもと、逆に halo が消えたという結果をもって当初の仮説は維持された（証明された）、ということになる。

しかしすべての研究が、このようなスタイルになじむわけではない。先に、仮説には事実レベルの仮説と理論的仮説があるとしたが、hypothesis testing 型のアプローチがそれに準じているのは、そのほとんどが、上のような実験可能な事実レベルの仮説である。実験は、仮無仮説を検証することである。「ウニが halo を作る」という本仮説 (Ａ) に対して「ウニがなくても halo はできる」という対立仮説（帰無仮説, Ａ̅）を立て、ウニのいない状況を人為的に作る。そして対立仮説が否定されたことにより、本仮説が正しいと考えざるをえない （Ａ̅ がだめならＡ しかない）、という構造になっている。これに対し理論的仮説の場合、中規模から乱流のように群集全体を対象にするようなものでは、多くの構成要素と相互関係、多様な環境要因がからむため実験は困難であり、また仮説可能性もあいまいである。つまり、仮に観察や実験の結果が理論に反していたとしても、実験に不満があるとか、それは特殊な例外だとか、複雑な事情を背景にいくらでも反論と正当化が可能である。中規模から乱流の場合、今のところ実際の支持根拠は、何らかの群集において環境圧力が中程度の場所で最も多様性が高い、という事実の提唱に止まる（Connell 1978, Doller & Tribble 1993）。合致する事実を累積することによって真であることを推測するというやり方は、もはや仮説演繹ではなく、帰納そのものといえる。ただ、演繹であれ帰納であれ、何らかの形で検証できるならば、それはそれでよい。問題なのは、仮説検証型になじまないテーマに対するまで、その種の論理構成を要求することである。

Hypothesis testing 型の論証を、いわゆる記載的な研究に無理に適用すると弊害がある、という主張がある（Loehle 1987）。たとえば深海の熱水噴出孔周辺の生物相を中心からの距離との関係で記述した研究や、ある地域の海岸の生物相を、海流系や基盤の地質などさまざまな環境条件との関係で論じた生物地理的研究所、どういう仮説を検証したのだろうか。もちろんこの場合も、熱水中の何らかの化学物質が周辺の生物分布に影響を与えている、とか、巻き上げると生物相が変わる、などの仮説を設定し、それを検証するために研究を行った、というように構成することは可能だろう。しかし示される結果に何も差があるわけではないから、そのようなことは無意味であり、むしろ事実提示の幅を狭めて結果の生物学的価値を減らす恐れすらある。またこのような研究は未知的事象に対する強い好奇心から行われるのであって、あとづけの構成は虚偽であり、意図の捏造に他ならない。たとえば最近イギリスの海洋生物の長期変動の研究がいくつかの論文として発表されているが、その中で、比較的名の通った雑誌に掲載されたもの（Hawkins et al. 2008）では、議論の大半を種間競争など
の群集論的記述が占めている。私はこのシリーズの研究の初の意図も過程も知って
いるが、これらは種間関係を念頭に行われてきたものではない。にもかかわらずあえ
てこのような構成にしたのは、編集者や reviewer が要求したか、著者らがあらかじ
め要求されることを予想してそのように書いたのだろう。しかし元々の意図とは異な
るから、議論に彩を欠く感は否めない。また将来的に見ても、この論文の引用価値
は前半の重厚なデータ部分にあり、後半の付け焼け的な種間関係論などにないことは
明らかである。

仮説検証型、ないし理論重視の研究スタイルは、分野全体の研究動向を左右したと
みられる例もある。海中林の崩壊現象は日本では礁焼きと呼ばれ、世界では日本と北
米でくわしく研究されているが、両者のアプローチは全く異なる（大垣 2010b）日本
の研究は、さまざまな地点で環境条件と海藻林的存在状態、その崩壊過程を記録す
るところから始まる。その中から礁焼きの発生、維持、解消のプロセスについての統
一的な仮説を立て、生態、生理、生化学的研究を積み重ねて仮説を補強して行くとい
うスタイルである。対して北米の場合、当初から群集論をめぐる既成の理論が念頭に
あり、それを検証するという形を取った。keystone predator に始まり、trophic
cascade, top-down vs. bottom-up から intermediate disturbance, multiple stable
points まで、さまざまな理論が登場する。それらに合致する事例が報告され、それを
別の地点に適用することを試み、うまく行くか行かないか、という形で研究が進め
られた。日本の場合、一応各地の事象をカバーする統一的理論に至っているといえる
が、北米ではこの問題の結末は極めてあいまいと言われざるをえない。既成理論は一部
を除いて適合せず、これらの群集理論は結局、現象を散らかして包括的理論を妨げる
役割を果したにすぎないようにみえる。

Hypothesis testing 型には必ずしも収まらないが、しばしば生物学的に有意義な成
果を生み出すスタイルのあるものを、私は仮に descriptive-analytical (記載分析型)
と呼んでいる。これは先に熱帯噴出孔周辺の生物相や、生物地理的研究の例で示した
ように、それまで知られていなかったパターンを記載し、類型化したり、その形成要
因を分析したりするものである。descriptive-analytical style は、hypothesis testing
に比べれば事実収集に重点があるが、やむもなく事実を集めているわけではなく、研
究者の何らかの興味や事前の視点に従って進められる。ポパーが言うように、でたら
めな事実収集から、意味のある結果があつまったに生まれないことは当然である。しかし
研究者が自己に対するとき、完全に「客観的」に見ることなどありえないのであって、
そこには当然、何らかの経験的知識や思想的背景が伴っている。hypothesis testing
に似る descriptive-analytical にしろ、要は程度の問題といえる。

何がおもしろいのかわからないような、散漫な記載的研究は数多くあり、それに対
して「どういう仮説を検証したのか」と言いたくなる気持ちはわからないではない。
しかし、仮説検証型にすれば即よい仕事になるわけではなく、逆に、仮説検証型でな
くてもおもしろい研究はできる。要はセンスの問題であって、スタイルは本質的な問
題ではない。自然の中に観察の焦点を絞り、得られた結果から生物学的に興味深い事
実を抽出するのは、研究者の独創性と経験が求められる作業である。カツノノカム
リの‘帆’の張り方が、北半球と南半球で鏡像関係にあるとか、ふだんは大型のもの

6
しか見られないウニのある種が、寒波で大量死したあとに幼体の大量定着を見るとか、黒潮にさらされる海域の中のある部分にだけ、ベーリング要素の純北方系種が現れるといったような興味深い事実は、長年にわたる地道な観察の中で気づかれ、新たな研究の端緒となるのである。

理論と事実

生態学の目的は生態現象についての理論を提示すること、というが、そもそも成功した理論はどれほどあるのか。たとえば、私が大学で生態学の講義を聴いた 30–40 年前には、ロトカ・ボルテラ式やガウゼの競争排除則、r–k strategy などが花形だった。その後の個体群生態学の動向にはくわしくないが、少なくともこれらが今でも生態学を主導する理論であるとは思えない。本物の理論とは、提示された当時の人々の自然観を変えあるいは深め、長く後世の研究の土台となるものでなければならない。生態学とその関連分野でその条件を満たす業績を上げたのは、Darwin, Clements, Hamilton など、せいぜい 5 本の指で足る程度だろう。こうした問題を評価する一つの基準として、今の高等学校の生物教科書の内容をあげることができる。そこに登場する生態・行動関連の成果とその発表年代を示すと、次のようにになる。「進化 (1859)」「遷移 (1916)」「ミツバチダンス (1923)」「刷り込み (1935)」…。この内容は、私が高校で生物を学んだ 40 年前とほとんど変わっていない。これに対して遺伝子分野の書き換わり方などはめざましいものがある。

次のようにまとめたとえ話がある。理論とは、箱に球を入れて行くようなものである。大きめの箱に、初めはサッカーボールを入れる。サッカーボールが入らなくなったら、ビー玉をいれる。ビー玉はサッカーボールの隙間を埋めてゆくが、それでもやがて入らなくなる。次に砂を入れる。そして最後に水をいれておしまいになる。球は理論であり、大きさはその重要性を示す。歴史的にはまず大きな理論が立てられ、それが出尽すと次々に小ぶりな理論が現れ、やがて飽和状態になって理論的進歩は止まる。もしもさらに進歩を続けようとすれば、箱を拡張するかこわすしかない。それは何によっ
て実現するのか。

地球上に存在する生物のうち、生態がくわしくかかっている種はどれほどあるだろうか。私は今、海岸貝類の長期変化を環境条件との関わりで分析しているが、各種の基礎的情報の少なさに悩まされている。出現種 240 余について、地理的分布は比較的よくわかっている。しかし食性については情報が限られ、同属種についての報告などを見渡して何とかしのく。さらに繁殖期間や発生様式となると、わかっているものは一部にすぎない。海産種の中では良く調べられているはずの潮間帯マクロベントスですらこうである。潮下帯に至っては絶望的だ。群集論というが、このような貧弱な知識をもとに、どのようにして「その場の生物 (ないしその関係) の総体としての群集」を論ずるのだろうか。結局断片的情報を寄せ集めて、つぎはぎの「群集論」が出来上がる。ある系統分類学者は、原生生物の驚異的に多様な生理、生態を紹介しながら、生態学における一般的な食物連鎖の理解を「極めて近視眼的」と批判している（マ
ルグリス・シュヴァルツ 1987）。細菌などかつてほとんど無視されていたが、海洋ブランクスト群集におけるその重要性は、今や常識になった。潮間帯群集研究はマクロペントスに著しく偏っているが、近頃は海岸の線虫群集の研究などもみられる（Gingold et al.2010）。さらに情報が蓄積されれば、新しい群集観が生まれるかもしれない。

箱の話に戻ると、箱を広げる手段はいろいろ考えられるが、基本的には新しい事実の集積、付加であるといえる。それは DNA 分析など、新しい技術の開発によって可能になることもあるが、既成の方法を新しい場面に適用することによっても実現される。理論は天から降ってくるものではなく、事実を背景として生まれてくる。帰納による仮説形成を否定するポパーは、「仮説形成は心理学の問題」（ポパー1934）とだけ述べて、仮説の由来を論じない。これはたぶん理論物理学などを想定しているのだろう。ケクレが夢の中で蛇が転になって回る姿を見て、ベンゼン環の構造を忽然と悟る、といった体のものである。しかしマクロ生態学において、有力な仮説が豊富な事実の観察なしに生まれてくるとは考えられない。ダーヴィンの進化論ひとつ考えてみればわかることである。

かつてある生態学者は、ポパーの反証主義を高く評価し、事実収集に重きを置く研究者を Baconian（ベーコン主義者）と批判した（Underwood 1997）。彼のフィールドとするオーストラリアは、世界でも有数の豊富な生物相を有する地域でありながら、個々の種についての基礎的情報はイギリスなどに比べてはるかに貧弱である。そのオーストラリアで、地域の主導的生態学者が海岸プラットフォームに多数のケースを立て並べ、限られた種の種間関係を実験と分散分析で調べるスタイルに集中してきた状況には、根本的な疑問を感じざるをえない。

生態学にとって、人間の自然認識に新たな一般的枠組み、すなわち理論を提示することが重要であるのではいない。しかし、長く生き続ける本物の理論は、数年に一度、常に才能と幸運に恵まれたごく一部の研究者のみよくするところであるという、厳しい現実からも目をそらすことはできない。それでもかかわらず誰もが仮説、理論を走れば、基礎となる事実の収集はおそらくになり、自然観の枠を狭め、理論そのものをも貧弱にするだろう。

Hypothesis testing の背景

なぜ今、生態学の中心部分において理論が重視され、事実収集が隅に追いやられていているのだろうか。いくつかの理由が考えられる。一つはここに述べてきたような、科学哲学者における思潮の生態学への浸透である。二つ目には、かつて事実収集を強調してきたことへの反動があるのかもしれない。1980 年代に、昆虫生態学者の青木重幸は次のように述べた。「もちろん、いまに多くの大学の先生が、仮説作りをたしなめ、そして『偏見のない目で事実を集め、それもとついて物を言わねばならない』と声を大にしているのを私は知っている。彼らにとって、“お話”はだれにもできるものなのだ」「1978 年になっても、日本の研究者の多くは…時代遅れの実証主義的
規範を携えて、仮説メーカーを笑っていた」（青木 1984）。事実を収集することに偏重し、新たな仮説を立てることを含めて、自由に発想することを押さえつけるような風潮に、当時の若手の研究者らが反発していた様子がうかがえる。三つ目として、最近ますます進行しつつある「生態学の規格化」ということがある。私が研究を始めた頃に比べて、統計処理や英語表現も含めた論文の体裁について、はるかに厳密化、標準化が求められているようになってきた。要するに以前はもっと「いいかげん」だったのである。その体裁の中には hypothesis testing スタイルも含まれる。つまり「英語は必ず native に見てもうえ」というのと同じ次元で、「論文は hypothesis testing スタイルを旨とせよ」と要求する、ということである。そして一旦こういう風潮が確立すると、それに適応しようとする動きが出てくることは避けられない。「一流雑誌」に論文を掲載して就職を有利にするために、仮説検証型の構成を採用し、また大学等で指導者が学生院生にそれを求める。その弟子がまたその弟子と…といった具合に、hypothesis testing スタイルの自己強化が進行することになる。

かつて今西錦司は、京大人文研における研究会の席上、海外の学説に従って日本の状況を位置づけた加藤英俊に対して、次のようなきびしい批判を浴びせた。「おまえは物事の順序を逆にしとる。フロムはフロムでよろしい。しかし、フロムはどれだけ実証的事実をもっとも。まして日本人について言うのに、おまえは一つも根拠になる事実を言わないやないか。おまえにはまず他人の学説に基づく結論があって、その結論を飾り立てているだけや。学問というのは事実から模索していくもんで、結論なんかすぐに出なくてよろしい。これからは事実だけを言うことにせい」（斎藤 1986）。これこそかつて青木が批判した、「時代遅れの実証主義的規範」そのものであったろう。その後のマクロ生物学は青木の主張に沿い、また欧米の動向に追随する形で仮説、理論を重視するようになった。しかしさらに四半世紀を経て、その方向性もまた再検討を要する時期に来ているように思われる。対立する両極の間を、時代と共に価値観が揺れ動く現象は、社会の様々な面に現れる。それは単なるくり返しが、それともラセン階段状の発展なのか。そんなことを考えながら、60年前のこの今西の言葉をかみじめみたい。

引用文献

青木重幸（1984）兵隊を持ったアブラムン. どうぶつ社
ベルナール C（1938, 原著 1865）実験医学序説. 三浦岱栄訳. 岩波文庫
marine nematodes. Mar Biol 157, 1741–1753
Hawkins SJ et al. (2008) Complex interactions in rapidly changing world:
responses of rocky shore communities to recent climate change. Mar Ecol Progr Ser, 37, 123–133
Loehle C (1987) Hypothesis testing in ecology: psychological aspects and the
importance of theory maturation. Quart Rev Ecol, 62, 397–409
マルグリス L・シュヴァルツ KV（1987, 原著 1982）五つの王国. 日経サイエンス
Funct Ecol, 2, 5–14
Ogden JC, Brown RA, Salesky N (1973) Grazing by the echinoid Diadema
antillarum Phillippi: formation of halos around West Indies patch reefs. Science,
182, 715–717
大垣俊一（2006）生態学の哲学的基礎. Argonauta, 12, 3–16
大垣俊一（2010a）ベイズ法と生態学. Argonauta, 17, 3–19
大垣俊一（2010b）ウニ密度変動論. Argonauta, 18, 3–16
パストゥール L（1970, 原著 1861）自然発生説の検討. 山口清三郎訳. 岩波文庫
ボパーK（1971, 原著 1934）科学的発見の論理. 恒星社厚生閣
ボパーK（1980, 原著 1963）推測と反駁. 藤本・石垣・森訳. 法政大学出版会
Nat, 602–617
ラカトシュ I（1986, 原著 1978）方法の擁護. 村上ほか訳. 新曜社
斎藤清明（1986）京大人文研. 創隆社